1. Definitions in Graph Theory

Definition 1. A graph $G=\left(V_{G}, E_{G}\right)$ is an ordered pair the vertex set V_{G} and the edge set $E_{G} \subseteq V_{G} \times V_{G}$ such that

- For all $v \in V_{G},(v, v) \notin E$.
- For all $v, w \in V_{G},(v, w) \in E_{G}$ if and only if $(w, v) \in E_{G}$.

When there is no ambiguity regarding vertex and edge sets, we will refer to V_{G} simply as V and E_{G} as E. When discussing edges (elements of the edge set), we will identify (v, w) with (w, v). By convention, we may write an edge $e=(v, w)$ (where $v, w \in V$) as $v w$ or, equivalently, wv.
Definition 2. Given a vertex $v \in V$ of graph G, the degree of v is the number of edges connecting to v, i.e.

$$
\operatorname{deg}(v):=\#(\{(v, w) \in E \mid w \in V\})=\#(\{(w, v) \in E \mid w \in V\})
$$

We may then determine that $2 \#(E)=\sum_{v \in V} \operatorname{deg}(V)$.
Definition 3. Given a graph G, a path $\left(v_{i}\right)$ in G of length n is a sequence of distinct vertices v_{1}, \ldots, v_{n+1} such that $v_{i} v_{i+1} \in E$ for each $i \in\{1, \ldots, n\}$. A cycle in G of length $n \geq 3$ is a sequence of vertices v_{1}, \ldots, v_{n+1} such that $\left(v_{1}, \ldots, v_{n}\right)$ is a path, $v_{n} v_{n+1} \in E$, and $v_{n+1}=v_{1}$.

One may note, for instance, that if n is the minimal degree of vertices in G, then there is a path of length at least n.

Definition 4. A graph G is connected if for any two vertices v and w, there exists a path in G beginning at v and ending at w.

We now have all the basic tools of graph theory and may now proceed to formalize these notions into some algebraic setting. Our algebraic object of choice will be a vector space, and in particular, we will consider vector spaces over \mathbb{F}_{2}, the finite field of 2 elements.

Definition 5. Given a graph G, the edge space \mathcal{E} is the free vector space over \mathbb{F}_{2} generated by E. Elements of \mathcal{E} correspond to subsets of G, and the vector addition corresponds to the symmetric difference.

Definition 6. Given a graph G, the cycle space \mathcal{C} is the subspace of \mathcal{E} spanned by all the elements of \mathcal{E} corresponding to cycles in G.
Theorem 1. A subset S of the edge set corresponds to an element of the cycle space \mathcal{C} if and only if each vertex of the subgraph determined by S has even degree.

